Polarized Beams: A Brief History and Future Prospects

Yaroslav Derbenev
Jefferson Laboratory, VA, USA
Mini-Workshop: Accelerator - Beam Polarization in Future Colliders
HKUST High Energy Physics Program
Hong Kong, January 17, 2019

Milestones of Polarized Beams History

I. Foundations and problems

- Polarization sources
- Thomas - BMT spin equations
- Spin in conventional rings
- Compensated spin rotators
- Resonance depolarization
- Crossing the spin resonances
- ZGS + AGS proton spin acceleration
- BST radiative polarization
- Orlov' depolarization
II. Polarization canonical theory
III. Siberian Snakes
- SS idea and demonstration
- SS techniques
- SS utilization and success in RHIC
- Multiple SS for SSC

IV. Spin-compensated quads

V. Figure 8 synchrotron
VI. Polarized EIC

- Fixed orbit e-spin rotator and snake

VII. Future polarized beams

- Polarized LHC?
- Polarization ideas for CEPC:

Snakes
Bending snakes
Achromatic snakes
Flipping spin rotators

- Polarization ideas for 75 TeV PPC

Many snakes
Spin-compensated quads

Thomas - BMT spin equation

$$
\vec{\mu}=\frac{e}{m c}(1+G) \vec{S}=\frac{e \hbar}{2 m c}(1+G) \vec{\sigma}
$$

With EM field in terms of rest frame (L.Thomas, 1925):

- $\frac{d \vec{S}}{d t}=\vec{\Omega} \times \vec{S} ; \quad \vec{\Omega}=-\frac{e}{\gamma m}\left[\underset{\text { magnetic part }}{(1+G)} \vec{B}_{r e s t}+\underset{\substack{\gamma+1 \\ \text { Thomas' precession }}}{\gamma} \vec{v} \times \vec{E}_{\text {rest }}\right]$

With EM field in terms of the lab frame:

- $\frac{d \vec{S}}{d t}=\frac{e}{m} \vec{S} \times\left[\left(\frac{1}{\gamma}+G\right) \vec{B}_{\perp}+\frac{1}{\gamma}(1+G) \vec{B}_{\|}+\left(\frac{1}{\gamma+1}+G\right) \vec{E} \times \vec{v}\right]$.
/re-derived by Bargmann-Mishel-Telegdi (1956) on the
background of the 4-fold covariant method and correspondence/

Polarized $\boldsymbol{e}^{ \pm}$beams

Polarized $e^{ \pm}$sources and transport scenario options

Electrons

Option I: Use Polarized e-gun (electrons only...)

- Stacking and accelerating for injection to collider ring
- Acceleration and maintenance of PEB in the Collider Ring

Option II: BST polarization in the Collider Ring at injection energy applying wigglers

- Acceleration and Luminosity run at wigglers off

Positrons

- Produce and stack unpolarized positrons
- BST polarization in the Collider Ring at injection energy applying wigglers
- Acceleration and Luminosity run at wigglers off

Need Siberian Snakes (and spin rotators) for both...

Spin Rotators

- Simple bend

- Elements : dipoles (vertical and radial bends)+ solenoids
- Fixed orbit non-commutative spin rotator of EIC

Spin Rotators for CEPC.1.

Fixed orbit SR on dipoles and solenoids for CEPC

$$
\left(S_{y}=1\right) \alpha_{x 1} \alpha_{y 1} \varphi_{z 1} \alpha_{x 2}-\alpha_{x 1} \alpha_{y 2} \varphi_{z 2}-\alpha_{x 2}\left(S_{z}=1\right)
$$

Pис. 9. Комбинированный ахроматический спиновый ротатор на поперечных полях с двумя соленоидами, переводящий вертикальное направление поляризации в продольное.
Максимальный интеграл поля в каждом из соленоидов составит примерно 35 и 60 $\mathrm{T} \cdot \mathrm{m}$, что при максимальном поле в соленоидах 5 Т потребует 7 и 12 m , соответственно.

Spin Rotators for CEPC. 2.

Achromatic Rotator on transverse fields

$$
\left(1^{\text {st }} \mathrm{Arc}, S_{y}=1\right) \alpha_{x 1} \alpha_{y 1} \alpha_{x 2}-\alpha_{x 1} \alpha_{y 2}-\alpha_{x 2}\left(\text { IP, } S_{z}=1\right)
$$

Орбитальные углы поворота в радиальных и вертикальных диполях:
$\alpha_{x 1}=-2.721 \mathrm{mrad}, \alpha_{x 2}=-5.893 \mathrm{mrad}$,
$\alpha_{y 1}=12.34 \mathrm{mrad}, \quad \alpha_{y 2}=9.487 \mathrm{mrad}$.

Spin dynamics canonical theory

- Quasi-classical Spin Hamiltonian
- \quad Spin action s_{n} and phase Ψ
- $s_{n}=\vec{n}(\vec{p}, \vec{r}, \varphi) \vec{s}=i n v$;
- Form $\vec{n}(\vec{p}, \vec{r}, \varphi)$ on definition satisfies same TBMT equation as spin vector
- Spin dispersion function (SDF) $\gamma \frac{\partial \vec{n}}{\partial \gamma}$ characterizes spin sensitivity to particle energy
- A theorem proved::

On a periodic orbit, there is a unique periodic solution: $\vec{n}_{0}(z)=\vec{n}_{0}(z+C)$ and two (arbitrary chosen) "free" orthogonal to \vec{n}_{0}. Their arbitrary vector superposition describes general spin motion on the orbit... which is:
Spin precession around $\vec{n}_{0}(z)$ with a global spin tune v_{0}.
Deviation of $\vec{n}(\vec{p}, \vec{r}, \varphi)$ from $\vec{n}_{0}(z)$ becomes large near resonances $\nu_{0}=v_{k}$, where v_{k} is a harmonic of the orbital motion.

Radiative polarization/depolarization of $e^{ \pm}$

- Bagrov-Sokolov-Ternov polarization:

$$
\tau_{b s t}^{-1}=\frac{5 \sqrt{3}}{8} \frac{r_{e} \gamma^{5} \hbar}{m_{e}|\rho|^{3}} \propto \gamma^{2} B^{3} ; \quad P_{b s t} \Longrightarrow \frac{8}{5 \sqrt{3}}
$$

- Orlov-Baier - D-K radiative depolarization rate: $\propto\left(\gamma \frac{\partial \hat{n}}{\partial \gamma}\right)^{2}$
- Polarization rate:

$$
\tau_{d k}^{-1}=\frac{5 \sqrt{3}}{8} \frac{r_{e} \gamma^{5} \hbar}{m_{e} C} \oint d s\left\langle\frac{1-\frac{2}{9}(\hat{n} \cdot \hat{v})^{2}+\frac{11}{18}\left(\gamma \frac{\partial \widehat{n}}{\partial \gamma}\right)^{2}}{|\rho(s)|^{3}}\right\rangle_{S}
$$

- Equilibrium polarization:
- $P_{d k} \Rightarrow-\frac{8}{5 \sqrt{3}} \frac{\oint d s\left(\frac{1}{|\rho(s)|^{3}} \hat{b} \cdot\left(\hat{n}-\gamma \frac{\partial \hat{n}}{\partial \gamma}\right)\right\rangle_{s}}{\oint d s\left(\frac{1}{|\rho(s)|^{3}}\left[1-\frac{2}{9}(\hat{n} \cdot \hat{s})^{2}+\frac{11}{18}\left(\gamma \frac{\partial \hat{n}}{\partial \gamma}\right)^{2}\right]\right\rangle_{s}}$

Spin Resonances

Problems with polarization in conventional rings

- Spin precession in vertical field: $\frac{d \Psi}{d z}=(1+\gamma G) \frac{d \alpha}{d z}$
- On real trajectory: $\vec{\Omega}=\left(\Omega_{y} ; \vec{\Omega}_{h}\right)$
- Spin tune in vertical field: $v_{s p}=\gamma G$ (i.e. number of spin horizontal turns... over the orbit)
- Spin resonances take place at $\gamma G \approx k ; \quad k N \pm k_{x} v_{x} \pm k_{y} v_{y} \pm k_{s} v_{s}$
- ...and depolarization happens: $\frac{d S_{h}}{d t}-i \Omega_{y} S_{h}=i \Omega_{h k} S_{y}$
- About more than γG resonances to be crossed at acceleration...
... a huge problem!
- Coherent spin maintenance during the luminosity run is other big problem...
- Radiative depolarization grows rapidly with energy due to the increasing of the spin tune spread

Spin resonance Crossing Culture

Backup slides

- Fast crossing
- Adiabatic crossing
- Froissart-Stora process
- RF crossing
- Kondratenko' transparent crossing

ZGS + AGS proton spin acceleration

Backup slides

- Acceleration of polarized proton beam
- 12 GeV of ZGS (A. Krisch group in $70^{\text {th }}$)
- 24 GeV AGS (A. Krisch with collaborators in $80^{\text {th }}$)

Spin Echo: Twisted Spin and Siberian Snakes

Spin Techniques 1

Twisted Spin Synchrotron: Spin Echo

- Figure 8 synchrotron (booster or storage ring)
- Topological compensation for global spin precession
- TSS is the best solution for acceleration in boosters

However, degenerated spin dynamics is unstable...

- Stabilization by solenoid (or small spin rotators)
- TSS is solution for polarized d acceleration/maintenance in collider rings (EIC)
- TSS is a unique solution for acceleration and maintenance of polarized deuterons...!

"Siberian Snakes": making Spin Echo in racetracks...

Cancellation idea of spin global precession over the racetrack orbit: instead of reversing the arcs, let us make reverse of spin...!
by inserting local spin flip about a horizontal axis

Topological compensation of spin precession over arcs

Spin echo effect is obviously extendable to any π rotator around an arbitrary horizontal axis

There is a unique periodic solution: $\vec{n}(z)=\vec{n}(z+C)$
and two (arbitrary chosen) "semi-periodic" orthogonal to $\vec{n}: \quad \vec{\eta}(z)=-\vec{\eta}(z+C)$
Their arbitrary vector superposition describes general spin motion at a flat orbit which is: spin precession around $\vec{n}(z)$ with global spin tune equal $1 / 2$ independent of the beam energy (!)

SS technology 1

To insert solenoid is, in principle, the simplest way to utilize local spin flip around a horizontal (longitudinal) axis

It takes compensation for x to y coupling
Demonstrated at IUCF
(A. Krisch and T. Roser, 1989)

Solenoid as π - rotator

- SS technology 1
- However, use solenoid is impractical at high energies

Spin Techniques 3

"Longitudinal" SS on transverse fields
 Takes 16 TM for protons

Spin techniques 4

"Radial" SS on transverse fields Takes 16 TM for protons

Spin techniques 5

Helical snakes (1978)

Helical snakes for RHIC

Helical snake design for MI of FNAL

SS technology 2

SS utilization and success in RHIC

SS technology 3

Helical snake design for MI of FNAL

From single to two or more SS in a ring

Why two snakes ?

- It may be convenient to have stable spin vertical in arcs
- At very high energies single snake in a ring may not be sufficient to remove (suppress) resonance perturbations
- In case of high energy $e^{ \pm}$, BST polarization can be killed by high sensitivity of the horizontal periodic spin to energy in arcs

Spin Techniques 6

Spin in a ring with two SS

With two snakes in a ring, periodical spin returns to be vertical in arcs (but with inter-flipping polarity)

- However, at two identical symmetrically located snakes spin motion becomes degenerated... - equivalent to TSS !

There are two possible ways to remove degeneration:

1. Degeneration can be easily alleviated by a slight asymmetry in snakes location
2. There is no degeneration at all when two symmetrically located snakes distinguish in their axes direction relative the beam velocity:
at angle φ between two snake' axes, global spin tune is equal to $v=\frac{\varphi}{\pi}$

- Spin Echo arrves thank to designed equity of the precession phases between snakes What is achieved:

1. No spin resonances, no crossing them
2. Spin phase divergence still cancelled. No resonance quantum depolarization of $\boldsymbol{e}^{ \pm}$
3. Chromaticity of stable spin in arcs is avoided

Issue: Intrinsic BST polarization is cancelled...but it can be return by wigglers.

Spin techniques 7

Multiple SS for High Energy hadron rings

26 pair of snakes for 20 TeV SSC

6 snakes for RHIC 300 GeV

Spin Techniques 8

Spin-compensated quads for very HE HC (1990) [A. Chao and Y.D.]

Split quadruple with simple π rotator in between $c b$ - correcting bends

Quad combined with 2π rotator along
Two "normal" SS installed in HE ring can then provide acceleration of polarized protons in range of about 1000 TeV (!)

Spin Techniques 9

Bending Rotators and Snakes on tilted dipoles (1995)

Future Prospects

Universal Spin Rotator and SS for EIC

Universal Spin Rotator on

 solenoids and constant bends

Electron spin rotators for JLEIC

R\&S for electrons in eRHIC

Thinking about polarized CEPC

Thoughts on Beam Polarization delivery in CEPC

Option I: Use Polarized e-gun (electrons only...)

- Stacking and accelerating for injection to collider ring
- Acceleration and maintenance of PEB in the Collider Ring

Option II: BST polarization in the Collider Ring (at injection energy...or in booster ring...?)

- Takes Polarizing Wigglers to facilitate BST
- Luminosity run at wigglers off

Need SS (and spin rotators) in both...

Spin Techniques 11

Achromatic Rotator and Snake on transverse fields for CEPC

Орбитальные углы поворота в радиальных и вертикальных диполях:
$\alpha_{x 1}=-2.721 \mathrm{mrad}, \alpha_{x 2}=-5.893 \mathrm{mrad}$,
$\alpha_{y 1}=12.34 \mathrm{mrad}, \quad \alpha_{y 2}=9.487 \mathrm{mrad}$.

Spin techniques 12

Fixed orbit SR and SS on dipoles and solenoids for CEPC

$$
\left(S_{y}=1\right) \alpha_{x 1} \alpha_{y 1} \varphi_{z 1} \alpha_{x 2}-\alpha_{x 1} \alpha_{y 2} \varphi_{z 2}-\alpha_{x 2}\left(S_{z}=\mathbf{1}\right)
$$

First estimations:

- Maximum TM of solenoids are 35 and 60 (7 and 12 M at 5 T)
- Total length of snake about 200 meters. (transverse field about 0.2 KGs)

Spin Matching and Tolerances

To be explored:

- Solenoids
- Snakes and arcs alignments
- Figure 8 Booster in energy range below 30 GeV
- Snakes for the succeeding boosters

Options for the Collider Rings

Option I Many SS

- Sufficient large chain of SS to suppress depolarizing impact of the superperiodic misalignment harmonics
- Spin tune $1 / 2$
- Compensation of tune spread associated with beam emittance
- Spin response function to suppress the beam-beam depolarization

Thinking about Future 75 TeV Polarized Proton Beams. 2.

Option II: Spin-compensated quadrupoles

- Two SS then will be enough to eliminate spin resonance crossing during the acceleration and stay away of the resonances through the luminosity run
- Think about spin flipping (if inquired); ideas on table...

Preconclusion

- At this stage, our anticipation of successful design for future polarized beams is close to 100% optimism.

Thank you four attention!

Backup slides

