Polarized Beams: A Brief History and Future Prospects

Yaroslav Derbenev *Jefferson Laboratory, VA, USA* Mini-Workshop: Accelerator - Beam Polarization in Future Colliders HKUST High Energy Physics Program Hong Kong, January 17, 2019

Milestones of Polarized Beams History

I. Foundations and problems

- Polarization sources
- Thomas BMT spin equations
- Spin in conventional rings
- Compensated spin rotators
- Resonance depolarization
- Crossing the spin resonances
- ZGS + AGS proton spin acceleration
- BST radiative polarization
- Orlov' depolarization

II. Polarization canonical theory

III. Siberian Snakes

- SS idea and demonstration
- SS techniques
- SS utilization and success in RHIC
- Multiple SS for SSC

IV. Spin-compensated quads

V. Figure 8 synchrotron VI. Polarized EIC

• Fixed orbit e-spin rotator and snake

VII. Future polarized beams

- Polarized LHC?
- Polarization ideas for CEPC:

Snakes

Bending snakes

Achromatic snakes

Flipping spin rotators

• Polarization ideas for 75 TeV PPC Many snakes Spin-compensated quads

Thomas – BMT spin equation

$$\vec{\mu} = \frac{e}{mc}(1+G)\vec{S} = \frac{e\hbar}{2mc}(1+G)\vec{\sigma}$$

With EM field in terms of rest frame (L.Thomas, 1925):

•
$$\frac{d\vec{S}}{dt} = \vec{\Omega} \times \vec{S}; \quad \vec{\Omega} = -\frac{e}{\gamma m} \Big[(1+G) \vec{B}_{rest} + \frac{\gamma}{\gamma+1} \vec{v} \times \vec{E}_{rest} \Big]_{\text{magnetic part}}$$

With EM field in terms of the lab frame:

•
$$\frac{d\vec{S}}{dt} = \frac{e}{m}\vec{S} \times \left[\left(\frac{1}{\gamma} + G\right)\vec{B}_{\perp} + \frac{1}{\gamma}(1+G)\vec{B}_{\parallel} + \left(\frac{1}{\gamma+1} + G\right)\vec{E} \times \vec{v}\right].$$

/re-derived by Bargmann-Mishel-Telegdi (1956) on the background of the 4-fold covariant method and correspondence/

Polarized e^{\pm} beams

Electrons

<u>Option I</u>: Use Polarized e-gun (electrons only...)

- Stacking and accelerating for injection to collider ring
- Acceleration and maintenance of PEB in the Collider Ring

<u>Option II</u>: BST polarization in the Collider Ring at injection energy *applying wigglers*

• Acceleration and Luminosity run at wigglers off

Positrons

- Produce and stack unpolarized positrons
- BST polarization in the Collider Ring at injection energy *applying wigglers*
- Acceleration and Luminosity run at wigglers off

Need Siberian Snakes (and spin rotators) for both...

Spin Rotators

- Elements : dipoles (vertical and radial bends)+ solenoids
- Fixed orbit non-commutative spin rotator of EIC

Spin Rotators for CEPC.1.

Fixed orbit SR on dipoles and solenoids for CEPC

$$(\mathbf{S}_{y} = \mathbf{1}) \quad \boldsymbol{\alpha}_{x1} \quad \boldsymbol{\varphi}_{z1} \quad \boldsymbol{\varphi}_{z1} \quad \boldsymbol{\alpha}_{x2} - \boldsymbol{\alpha}_{x1} \quad \boldsymbol{\varphi}_{z2} \quad \boldsymbol{\varphi}_{z2} \quad -\boldsymbol{\varphi}_{x2} \quad (\mathbf{S}_{z} = \mathbf{1})$$

Рис. 9. Комбинированный ахроматический спиновый ротатор на поперечных полях с двумя соленоидами, переводящий вертикальное направление поляризации в продольное.

Максимальный интеграл поля в каждом из соленоидов составит примерно 35 и 60 Т·m, что при максимальном поле в соленоидах 5 Т потребует 7 и 12 m, соответственно.

Spin Rotators for CEPC. 2.

Achromatic Rotator on transverse fields

(1st Arc, $S_y = 1$) α_{x1} α_{y1} $\alpha_{x2} - \alpha_{x1}$ α_{y2} $-\alpha_{x2}$ (IP, $S_z = 1$)

Орбитальные углы поворота в радиальных и вертикальных диполях: $\alpha_{x1} = -2.721 \text{ mrad}, \alpha_{x2} = -5.893 \text{ mrad},$ $\alpha_{y1} = 12.34 \text{ mrad}, \qquad \alpha_{y2} = 9.487 \text{ mrad}.$

Spin dynamics canonical theory

- Quasi-classical Spin Hamiltonian
- Spin action s_n and phase Ψ
- $s_n = \vec{n}(\vec{p}, \vec{r}, \varphi)\vec{s} = inv;$
- Form $\vec{n}(\vec{p}, \vec{r}, \varphi)$ on definition satisfies same TBMT equation as spin vector

• Spin dispersion function (SDF) $\gamma \frac{\partial \vec{n}}{\partial \gamma}$ characterizes spin sensitivity to particle energy

• <u>A theorem proved</u>::

On a periodic orbit, there is a unique periodic solution: $\vec{n}_0(z) = \vec{n}_0(z + C)$ and two (arbitrary chosen) "free" orthogonal to \vec{n}_0 . Their arbitrary vector superposition describes general spin motion on the orbit... which is:

Spin precession around $\vec{n}_0(z)$ with a global spin tune ν_0 .

Deviation of $\vec{n}(\vec{p}, \vec{r}, \varphi)$ from $\vec{n}_0(z)$ becomes large near resonances $\nu_0 = \nu_k$, where ν_k is a harmonic of the orbital motion.

Radiative polarization/depolarization of e^{\pm}

• Bagrov-Sokolov-Ternov polarization:

$$\tau_{bst}^{-1} = \frac{5\sqrt{3}}{8} \frac{r_e \gamma^5 \hbar}{m_e |\rho|^3} \propto \gamma^2 \ B^3 \ ; \qquad P_{bst} \Longrightarrow \frac{8}{5\sqrt{3}}$$

- Orlov-Baier D-K radiative depolarization rate: $\propto (\gamma \frac{\partial \hat{n}}{\partial \gamma})^2$
- Polarization rate:

$$\tau_{dk}^{-1} = \frac{5\sqrt{3}}{8} \frac{r_e \gamma^5 \hbar}{m_e C} \oint ds \, \left\langle \frac{1 - \frac{2}{9} (\hat{n} \cdot \hat{v})^2 + \frac{11}{18} (\gamma \frac{\partial \hat{n}}{\partial \gamma})^2}{|\rho(s)|^3} \right\rangle_s,$$

• Equilibrium polarization:

•
$$P_{dk} \Longrightarrow -\frac{8}{5\sqrt{3}} \frac{\oint ds \langle \frac{1}{|\rho(s)|^3} \hat{b} \cdot (\hat{n} - \gamma \frac{\partial \hat{n}}{\partial \gamma}) \rangle_s}{\oint ds \langle \frac{1}{|\rho(s)|^3} \left[1 - \frac{2}{9} (\hat{n} \cdot \hat{s})^2 + \frac{11}{18} \left(\gamma \frac{\partial \hat{n}}{\partial \gamma} \right)^2 \right] \rangle_s}$$

Spin Resonances

Problems with polarization in conventional rings

- Spin precession in vertical field: $\frac{d\Psi}{dz} = (1 + \gamma G) \frac{d\alpha}{dz}$
- On real trajectory: $\vec{\Omega} = (\Omega_y; \vec{\Omega}_h)$
- Spin tune in vertical field: $v_{sp} = \gamma G$ (i.e. number of spin horizontal turns... over the orbit)
- Spin resonances take place at $\gamma G \approx k$; $kN \pm k_x v_x \pm k_y v_y \pm k_s v_s$
- ...and depolarization happens: $\frac{dS_h}{dt} i\Omega_y S_h = i\Omega_{hk}S_y$
- About more than γ*G* resonances to be crossed at acceleration...
 ... a huge problem!
- Coherent spin maintenance during the luminosity run is other big problem...
- Radiative depolarization grows rapidly with energy due to the increasing of the spin tune spread

Spin resonance Crossing Culture

Backup slides

- Fast crossing
- Adiabatic crossing
- Froissart-Stora process
- RF crossing
- Kondratenko' transparent crossing

ZGS + AGS proton spin acceleration

Backup slides

- Acceleration of polarized proton beam
- 12 GeV of ZGS (A. Krisch group in 70th)
- 24 GeV AGS (A. Krisch with collaborators in 80th)

Spin Echo: Twisted Spin and Siberian Snakes

Spin Techniques 1

Twisted Spin Synchrotron: Spin Echo

- Figure 8 synchrotron (booster or storage ring)
- Topological compensation for global spin precession
- TSS is the best solution for acceleration in boosters

However, degenerated spin dynamics is unstable...

- Stabilization by solenoid (or small spin rotators)
- TSS is solution for polarized d acceleration/maintenance in collider rings (EIC)
- TSS is a unique solution for acceleration and maintenance of polarized deuterons... !

"Siberian Snakes": making Spin Echo in racetracks...

Cancellation idea of spin global precession over the racetrack orbit:

instead of reversing the arcs, let us make *reverse of spin*...!

by inserting local spin flip about a horizontal axis

Topological compensation of spin precession over arcs

Spin echo effect is obviously extendable to any π – rotator around an arbitrary horizontal axis

There is a unique periodic solution: $\vec{n}(z) = \vec{n}(z+C)$ and two (arbitrary chosen) "semi-periodic" orthogonal to \vec{n} : $\vec{\eta}(z) = -\vec{\eta}(z+C)$ Their arbitrary vector superposition describes general spin motion at a flat orbit which is: spin precession around $\vec{n}(z)$ with global spin tune equal $\frac{1}{2}$ independent of the beam energy (!)

SS technology 1

To insert solenoid is, in principle, the simplest way to utilize local spin flip around a horizontal (longitudinal) axis

It takes compensation for *x* to *y* coupling Demonstrated at IUCF

(A. Krisch and T. Roser, 1989)

Solenoid as π – *rotator*

- SS technology 1
- However, use solenoid is impractical at high energies

Spin Techniques 3

"Longitudinal" SS on transverse fields Takes 16 TM for protons

Spin techniques 4

"Radial" SS on transverse fields Takes 16 TM for protons

Spin techniques 5

Helical snakes (1978)

Helical snakes for RHIC

Helical snake design for MI of FNAL

SS utilization and success in RHIC

SS technology 3

Helical snake design for MI of FNAL

From single to two or more SS in a ring

Why two snakes ?

- It may be convenient to have stable spin vertical in arcs
- At very high energies single snake in a ring may not be sufficient to remove (suppress) resonance perturbations
- In case of high energy e^{\pm} , BST polarization can be killed by high sensitivity of the horizontal periodic spin to energy in arcs

Spin Techniques 6

Spin in a ring with two SS

With two snakes in a ring, periodical spin returns to be vertical in arcs

(but with inter-flipping polarity)

• However, at two *identical symmetrically located* snakes spin motion becomes degenerated... - *equivalent to TSS* !

There are two possible ways to remove degeneration:

- 1. Degeneration can be easily alleviated by a slight asymmetry in snakes location
- 2. There is no degeneration at all when two symmetrically located snakes distinguish in their axes direction relative the beam velocity:

at angle φ between two snake' axes, global spin tune is equal to $\nu = \frac{\varphi}{\pi}$

- Spin Echo arrves thank to designed equity of the precession phases between snakes <u>What is achieved</u>:
- 1. No spin resonances, no crossing them
- 2. Spin phase divergence still cancelled. No resonance quantum depolarization of e^{\pm}
- **3.** Chromaticity of stable spin in arcs is avoided Issue: Intrinsic BST polarization is cancelled...but it can be return by wigglers.

Spin techniques 7

Multiple SS for High Energy hadron rings

26 pair of snakes for 20 TeV SSC

6 snakes for RHIC 300 GeV

Spin Techniques 8

Split quadruple with simple π rotator in between cb – correcting bends

Quad combined with $2\pi rotator$ along

Two "normal" SS installed in HE ring can then provide acceleration of polarized protons in range of about 1000 TeV (!)

Spin Techniques 9

Bending Rotators and Snakes on tilted dipoles (1995)

Future Prospects

Universal Spin Rotator and SS for EIC

Thinking about polarized CEPC

Option I: Use Polarized e-gun (electrons only...)

- Stacking and accelerating for injection to collider ring
- Acceleration and maintenance of PEB in the Collider Ring

Option II: **BST polarization in the Collider Ring** (at injection energy...or in booster ring...?)

- Takes Polarizing Wigglers to facilitate BST
- Luminosity run at wigglers off

Need SS (and spin rotators) in both...

Spin Techniques 11

Achromatic Rotator and Snake on transverse fields for CEPC

Орбитальные углы поворота в радиальных и вертикальных диполях: $\alpha_{x1} = -2.721 \text{ mrad}, \alpha_{x2} = -5.893 \text{ mrad},$ $\alpha_{y1} = 12.34 \text{ mrad}, \qquad \alpha_{y2} = 9.487 \text{ mrad}.$

Spin techniques 12

Fixed orbit SR and SS on dipoles and solenoids for CEPC

$$(S_{y} = 1) \quad \alpha_{x1} \quad \alpha_{y1} \quad \varphi_{z1} \quad \alpha_{x2} - \alpha_{x1} \quad \alpha_{y2} \quad \varphi_{z2} \quad -\alpha_{x2} \quad (S_{z} = 1)$$

First estimations:

- Maximum TM of solenoids are 35 and 60 (7 and 12 M at 5 T)
- Total length of snake about 200 meters. (transverse field about 0.2 KGs)

Spin Matching and Tolerances

To be explored:

- Solenoids
- Snakes and arcs alignments

- Figure 8 Booster in energy range below 30 GeV
- Snakes for the succeeding boosters

Options for the Collider Rings

Option I Many SS

- Sufficient large chain of SS to suppress depolarizing impact of the superperiodic misalignment harmonics
- Spin tune $\frac{1}{2}$
- Compensation of tune spread associated with beam emittance
- Spin response function to suppress the beam-beam depolarization

Option II: Spin-compensated quadrupoles

- Two SS then will be enough to eliminate spin resonance crossing during the acceleration and stay away of the resonances through the luminosity run
- Think about spin flipping (if inquired); ideas on table...

Preconclusion

• At this stage, our anticipation of successful design for future polarized beams is close to 100% optimism.

Thank you four attention!

Backup slides

